BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

Selasa, 29 Jun 2010

Ring topology

A ring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node - a ring. Data travels from node to node, with each node along the way handling every packet.

Because a ring topology provides only one pathway between any two nodes, ring networks may be disrupted by the failure of a single link[1]. A node failure or cable break might isolate every node attached to the ring. FDDI networks overcome this vulnerability by sending data on a clockwise and a counterclockwise ring: in the event of a break data is wrapped back onto the complementary ring before it reaches the end of the cable, maintaining a path to every node along the resulting "C-Ring". 802.5 networks -- also known as IBM Token Ring networks -- avoid the weakness of a ring topology altogether: they actually use a star topology at the physical layer and a Multistation Access Unit (MAU) to imitate a ring at the datalink layer.

Many ring networks add a "counter-rotating ring" to form a redundant topology. Such "dual ring" networks include Spatial Reuse Protocol, Fiber Distributed Data Interface (FDDI), and Resilient Packet Ring.

Star topology

Star networks are one of the most common computer network topologies. In its simplest form, a star network consists of one central switch, hub or computer, which acts as a conduit to transmit messages.[1] Thus, the hub and leaf nodes, and the transmission lines between them, form a graph with the topology of a star. If the central node is passive, the originating node must be able to tolerate the reception of an echo of its own transmission, delayed by the two-way transmission time (i.e. to and from the central node) plus any delay generated in the central node. An active star network has an active central node that usually has the means to prevent echo-related problems.

The star topology reduces the chance of network failure by connecting all of the systems to a central node. When applied to a bus-based network, this central hub rebroadcasts all transmissions received from any peripheral node to all peripheral nodes on the network, sometimes including the originating node. All peripheral nodes may thus communicate with all others by transmitting to, and receiving from, the central node only. The failure of a transmission line linking any peripheral node to the central node will result in the isolation of that peripheral node from all others, but the rest of the systems will be unaffected. [2]

It is also designed with each node (file servers, workstations, and peripherals) connected directly to a central network hub, switch, or concentrator.

Data on a star network passes through the hub, switch, or concentrator before continuing to its destination. The hub, switch, or concentrator manages and controls all functions of the network. It is also acts as a repeater for the data flow. This configuration is common with twisted pair cable. However, it can also be used with coaxial cable or optical fibre cable.

Contents [hide]
1 Advantages
2 Disadvantages
3 References
4 See also

Bus topology

A bus topology connects each computer (nodes) to a single segment trunk (a communication line, typically coax cable, that is referred to as the 'bus'. The signal travels from one end of the bus to the other. A terminator is required at each to absorb the signal so as it does not reflect back across the bus. A media access method called CSMA/MA is used to handle the collision that occur when two signals placed on the wire at the same time. The bus topology is passive. In other words, the computers on the bus simply 'listen' for a signal; they are not responsible for moving the signal along.

Ahad, 20 Jun 2010

CAMPUS NETWORK

NETWORK ARCHITECTURE

Network architecture is the design of a communications network. It is a framework for the specification of a network's physical components and their functional organization and configuration, its operational principles and procedures, as well as data formats used in its operation.

In computing, the network architecture is a characteristics of a computer network. The most prominent architecture today is evident in the framework of the Internet, which is based on the Internet Protocol Suite.

In telecommunication, the specification of a network architecture may also include a detailed description of products and services delivered via a communications network, as well as detailed rate and billing structures under which services are compensated.

In distinct usage in distributed computing, network architecture is also sometimes used as a synonym for the structure and classification of distributed application architecture, as the participating nodes in a distributed application are often referred to as a network. For example, the applications architecture of the public switched telephone network (PSTN) has been termed the Advanced Intelligent Network. There are any number of specific classifications but all lie on a continuum between the dumb network (e.g., Internet) and the intelligent computer network (e.g., the telephone network). Other networks contain various elements of these two classical types to make them suitable for various types of applications. Recently the context aware network, which is a synthesis of the two, has gained much interest with its ability to combine the best elements of both.

TYPES OF NETWORK

PERSONAL AREA NETWORK
A personal area network (PAN) is a computer network used for communication among computer and different information technological devices close to one person. Some examples of devices that are used in a PAN are personal computers, printers, fax machines, telephones, PDAs, scanners, and even video game consoles. A PAN may include wired and wireless connections between devices. The reach of a PAN typically extends to 10 meters.[2] A wired PAN is usually constructed with USB and Firewire connections while technologies such as Bluetooth and infrared communication typically form a wireless PAN

LOCAL AREA NETWORK
A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as home, school, computer laboratory, office building, or closely positioned group of buildings. Each computer or device on the network is a node. Current wired LANs are most likely to be based on Ethernet technology, although new standards like ITU-T G.hn also provide a way to create a wired LAN using existing home wires (coaxial cables, phone lines and power lines).[3]


Typical library network, in a branching tree topology and controlled access to resourcesAll interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.

The defining characteristics of LANs, in contrast to WANs (Wide Area Networks), include their higher data transfer rates, smaller geographic range, and no need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 40 and 100 Gbit/s.[4]

HOME AREA NETWORK
A home area network is a residential LAN which is used for communication between digital devices typically deployed in the home, usually a small number of personal computers and accessories, such as printers and mobile computing devices. An important function is the sharing of Internet access, often a broadband service through a CATV or Digital Subscriber Line (DSL) provider.

CAMPUS NETWORK
A campus network is a computer network made up of an interconnection of local area networks (LANs) within a limited geographical area. The networking equipments (switches, routers) and transmission media (optical fiber, copper plant, Cat5 cabling etc.) are almost entirely owned (by the campus tenant / owner: an enterprise, university, government etc.).

In the case of a university campus-based campus network, the network is likely to link a variety of campus buildings including; academic departments, the university library and student residence halls.

WIRE AREA NETWORK
A wide area network (WAN) is a computer network that covers a large geographic area such as a city, country, or spans even intercontinental distances, using a communications channel that combines many types of media such as telephone lines, cables, and air waves. A WAN often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

GLOBAL AREA NETWORK
A global area network (GAN) is a network used for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is handing off the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial WIRELESS local area networks (WLAN).[5]

ENTERPRISE PRIVATE NETWORK
An Enterprise Private Network is a network build by an enterprise to interconnect the various company sites (production sites, head offices, remote offices, shops etc.) in order to share computer resources over the network.


Sample EPN made of Frame relay WAN connections and dialup remote access.Beginning with the digitalisation of telecommunication networks started in the 70's in the USA (by AT&T) [6] and propelled by the growth in computer systems availability and demands private networks have been built for decades without the need to append the term private to them. The networks were operated over telecommunication networks and as per voice communications a certain amount of security and secrecy was expected and assumed.

But with the Internet in the 90's came a new type of network built over this Public infrastructure, using encryption to protect the data traffic from eaves-dropping (VPN). So the enterprise networks are now commonly referred to Enterprise Private Network in order to clarify that these are private networks (in opposition to public networks).

Virtual private network

Sample VPN used to interconnect 3 office and Remote usersA virtual private network (VPN) is a computer network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The data link layer protocols of the virtual network are said to be tunneled through the larger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.

A VPN may have best-effort performance, or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.

Internetwork
An Internetwork is the connection of two or more private computer networks via a common switching (OSI Layer 2) or routing technology (OSI Layer 3) and owned by separate entities (public or private). The result is called an internetwork. The Internet is an aggregation of many internetworks, hence its name was shortened to Internet.

Any interconnection between public, private, commercial, industrial, or governmental networks may also be defined as an internetwork or (more often) an extranet.

Internet
The Internet is a global system of interconnected governmental, academic, corporate, public, and private computer networks. It is based on the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research Projects Agency Network (ARPANET) developed by DARPA of the U.S. Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW). The 'Internet' is most commonly spelled with a capital 'I' as a proper noun, for historical reasons and to distinguish it from other generic internetworks.

Participants in the Internet use a diverse array of methods of several hundred documented, and often standardized, protocols compatible with the Internet Protocol Suite and an addressing system (IP Addresses) administered by the Internet Assigned Numbers Authority and address registries. Service providers and large enterprises exchange information about the reachability of their address spaces through the Border Gateway Protocol (BGP), forming a redundant worldwide mesh of transmission paths.

Intranets and extranets
Intranets and extranets are parts or extensions of a computer network, usually a local area network.

An intranet is a set of networks, using the Internet Protocol and IP-based tools such as web browsers and file transfer applications, that is under the control of a single administrative entity. That administrative entity closes the intranet to all but specific, authorized users. Most commonly, an intranet is the internal network of an organization. A large intranet will typically have at least one web server to provide users with organizational information.

An extranet is a network that is limited in scope to a single organization or entity and also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities (e.g., a company's customers may be given access to some part of its intranet creating in this way an extranet, while at the same time the customers may not be considered 'trusted' from a security standpoint). Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although, by definition, an extranet cannot consist of a single LAN; it must have at least one connection with an external network.

Overlay Network
An overlay network is a computer network that is built on top of another network. Nodes in the overlay can be thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network.


A sample overlay network: IP over SONET over OpticalNodes in the overlay can be thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network. For example, many peer-to-peer networks are overlay networks because they run on top of the Internet. Internet was built as an overlay on the telephone network [7].

Overlay networks have been around since the invention of networking when computer systems were connected over telephone lines using modem, before any data network existed.

Nowadays the Internet is the basis for many overlaid networks that can be constructed to permit routing of messages to destinations not specified by an IP address. For example, distributed hash tables can be used to route messages to a node having a specific logical address, whose IP address is not known in advance.

Overlay networks have also been proposed as a way to improve Internet routing, such as through quality of service guarantees to achieve higher-quality streaming media. Previous proposals such as IntServ, DiffServ, and IP Multicast have not seen wide acceptance largely because they require modification of all routers in the network. On the other hand, an overlay network can be incrementally deployed on end-hosts running the overlay protocol software, without cooperation from ISPs. The overlay has no control over how packets are routed in the underlying network between two overlay nodes, but it can control, for example, the sequence of overlay nodes a message traverses before reaching its destination.

For example, Akamai Technologies manages an overlay network that provides reliable, efficient content delivery (a kind of multicast). Academic research includes End System Multicast and Overcast for multicast; RON (Resilient Overlay Network) for resilient routing; and OverQoS for quality of service guarantees, among others.

Basic hardware components
All networks are made up of basic hardware building blocks to interconnect network nodes, such as Network Interface Cards (NICs), Bridges, Hubs, Switches, and Routers. In addition, some method of connecting these building blocks is required, usually in the form of galvanic cable (most commonly Category 5 cable). Less common are microwave links (as in IEEE 802.12) or optical cable ("optical fiber"). An Ethernet card may also be required.

Network interface cards
A network card, network adapter, or NIC (network interface card) is a piece of computer hardware designed to allow computers to communicate over a computer network. It provides physical access to a networking medium and often provides a low-level addressing system through the use of MAC addresses.

Repeaters
A repeater is an electronic device that receives a signal, cleans it of unnecessary noise, regenerates it, and retransmits it at a higher power level, or to the other side of an obstruction, so that the signal can cover longer distances without degradation. In most twisted pair Ethernet configurations, repeaters are required for cable that runs longer than 100 meters. Repeaters work on the Physical Layer of the OSI model.

Hubs
A network hub contains multiple ports. When a packet arrives at one port, it is copied unmodified to all ports of the hub for transmission. The destination address in the frame is not changed to a broadcast address.[8] It works on the Physical Layer of the OSI model.

Bridges
A network bridge connects multiple network segments at the data link layer (layer 2) of the OSI model. Bridges do send broadcasts to all ports except the one on which the broadcast was received. However, bridges do not promiscuously copy traffic to all ports, as hubs do, but learn which MAC addresses are reachable through specific ports. Once the bridge associates a port and an address, it will send traffic for that address to that port only.

Bridges learn the association of ports and addresses by examining the source address of frames that it sees on various ports. Once a frame arrives through a port, its source address is stored and the bridge assumes that MAC address is associated with that port. The first time that a previously unknown destination address is seen, the bridge will forward the frame to all ports other than the one on which the frame arrived.

Bridges come in three basic types:

Local bridges: Directly connect local area networks (LANs)
Remote bridges: Can be used to create a wide area network (WAN) link between LANs. Remote bridges, where the connecting link is slower than the end networks, largely have been replaced with routers.
Wireless bridges: Can be used to join LANs or connect remote stations to LANs.
Switches
A network switch is a device that forwards and filters OSI layer 2 datagrams (chunk of data communication) between ports (connected cables) based on the MAC addresses in the packets.[9] This is distinct from a hub in that it only forwards the frames to the ports involved in the communication rather than all ports connected. A switch breaks the collision domain but represents itself a broadcast domain. Switches make forwarding decisions of frames on the basis of MAC addresses. A switch normally has numerous ports, facilitating a star topology for devices, and cascading additional switches.[10] Some switches are capable of routing based on Layer 3 addressing or additional logical levels; these are called multi-layer switches. The term switch is used loosely in marketing to encompass devices including routers and bridges, as well as devices that may distribute traffic on load or by application content (e.g., a Web URL identifier).

Routers
A router is an internetworking device that forwards packets between networks by processing information found in the datagram or packet (Internet protocol information from Layer 3 of the OSI Model). In many situations, this information is processed in conjunction with the routing table (also known as forwarding table). Routers use routing tables to determine what interface to forward packets (this can include the "null" also known as the "black hole" interface because data can go into it, however, no further processing is done for said data).

Computer network

INTRODUCTION-A computer network allows sharing of resources and information among devices connected to the network. The Advanced Research Projects Agency (ARPA) funded the design of the Advanced Research Projects Agency Network (ARPANET) for the United States Department of Defense. It was the first operational computer network in the world.[1] Development of the network began in 1969, based on designs developed during the 1960s. For a history see ARPANET, the first network.

PURPOSE
Computer networks can be used for several purposes:

Facilitating communications. Using a network, people can communicate efficiently and easily via e-mail, instant messaging, chat rooms, telephony, video telephone calls, and videoconferencing.
Sharing hardware. In a networked environment, each computer on a network can access and use hardware on the network. Suppose several personal computers on a network each require the use of a laser printer. If the personal computers and a laser printer are connected to a network, each user can then access the laser printer on the network, as they need it.
Sharing files, data, and information. In a network environment, any authorized user can access data and information stored on other computers on the network. The capability of providing access to data and information on shared storage devices is an important feature of many networks.
Sharing software. Users connected to a network can access application programs on the network.
[edit] Network classification
The following list presents categories used for classifying networks.

CONNECTION METHOD
Computer networks can be classified according to the hardware and software technology that is used to interconnect the individual devices in the network, such as optical fiber, Ethernet, Wireless LAN, HomePNA, Power line communication or G.hn.

Ethernet uses physical wiring to connect devices. Frequently deployed devices include hubs, switches, bridges and/or routers. Wireless LAN technology is designed to connect devices without wiring. These devices use radio waves or infrared signals as a transmission medium. ITU-T G.hn technology uses existing home wiring (coaxial cable, phone lines and power lines) to create a high-speed (up to 1 Gigabit/s) local area network.

WIRED TECHNOLOGIES
Twisted pair wire is the most widely used medium for telecommunication. Twisted-pair wires are ordinary telephone wires which consist of two insulated copper wires twisted into pairs and are used for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 100 million bits per second.
Coaxial cable is widely used for cable television systems, office buildings, and other worksites for local area networks. The cables consist of copper or aluminum wire wrapped with insulating layer typically of a flexible material with a high dielectric constant, all of which are surrounded by a conductive layer. The layers of insulation help minimize interference and distortion. Transmission speed range from 200 million to more than 500 million bits per second.
Optical fiber cable consists of one or more filaments of glass fiber wrapped in protective layers. It transmits light which can travel over extended distances without signal loss. Fiber-optic cables are not affected by electromagnetic radiation. Transmission speed may reach trillions of bits per second. The transmission speed of fiber optics is hundreds of times faster than for coaxial cables and thousands of times faster than for twisted-pair wire.
WIRELESS TECHNOLOGIES
Terrestrial Microwave – Terrestrial microwaves use Earth-based transmitter and receiver. The equipment look similar to satellite dishes. Terrestrial microwaves use low-gigahertz range, which limits all communications to line-of-sight. Path between relay stations spaced approx. 30 miles apart. Microwave antennas are usually placed on top of buildings, towers, hills, and mountain peaks.
Communications Satellites – The satellites use microwave radio as their telecommunications medium which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically 22,000 miles (for geosynchronous satellites) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.
Cellular and PCS Systems – Use several radio communications technologies. The systems are divided to different geographic area. Each area has low-power transmitter or radio relay antenna device to relay calls from one area to the next area.
Wireless LANs – Wireless local area network use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. An example of open-standards wireless radio-wave technology is IEEE 802.11b.
Bluetooth – A short range wireless technology. Operate at approx. 1Mbps with range from 10 to 100 meters. Bluetooth is an open wireless protocol for data exchange over short distances.
SCALE
Networks are often classified as local area network (LAN), wide area network (WAN), metropolitan area network (MAN), personal area network (PAN), virtual private network (VPN), campus area network (CAN), storage area network (SAN), and others, depending on their scale, scope and purpose. (e.g., Controller Area Network (CAN)) Usage, trust level, and access right often differ between these types of networks. For example, LANs tend to be designed for internal use by an organization's internal systems and employees in individual physical locations (such as a building), while WANs may connect physically separate parts of an organization and may include connections to third parties.

FUNCTIONAL RELATIONSHIP (network architecture)
Computer networks may be classified according to the functional relationships which exist among the elements of the network, e.g., active networking, client–server and peer-to-peer (workgroup) architecture.

NETWORK TOPOLOGY
Computer networks may be classified according to the network topology upon which the network is based, such as bus network, star network, ring network, mesh network, star-bus network, tree or hierarchical topology network. Network topology is the coordination by which devices in the network are arranged in their logical relations to one another, independent of physical arrangement. Even if networked computers are physically placed in a linear arrangement and are connected to a hub, the network has a star topology, rather than a bus topology. In this regard the visual and operational characteristics of a network are distinct. Networks may be classified based on the method of data used to convey the data, these include digital and analog networks.

Rabu, 2 Jun 2010

RAM(random acess memory)

Random-access memory (RAM) is a form of computer data storage. Today, it takes the form of integrated circuits that allow stored data to be accessed in any order (i.e., at random). "Random" refers to the idea that any piece of data can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data.[1]
By contrast, storage devices such as magnetic discs and optical discs rely on the physical movement of the recording medium or a reading head. In these devices, the movement takes longer than data transfer, and the retrieval time varies based on the physical location of the next item.
The word RAM is often associated with volatile types of memory (such as DRAM memory modules), where the information is lost after the power is switched off. Many other types of memory are RAM, too, including most types of ROM and a type of flash memory called NOR-Flash.

penDRIve

Pen drives are classified as NAND style data storage devices. Equipped with a large amount of memory capacity, the pen drive is considered to be an improvement on both the older floppy drive disks and the more modern compact disks that are often used to copy data and reload the files on a different hard drive. Even a pen drive with a relatively low storage capacity tends to provide plenty of space for a number of files. The types of files that can be loaded onto a pen drive are all the common types that can be housed on any hard drive. This makes it possible for persons to copy photos, spreadsheets, word processing documents, movie clips, music tracks, and just about any other type of file.
Utilizing a pen drive is a simple task. One end of the drive is equipped with a USB connector at one end. The connector is inserted into the USB port on a desktop or laptop and activated. Once the pen drive is in place, it is possible to drop and drag files into the memory of the drive, or forward the files to the drive. The process is no more difficult than attaching files to an email or copying files onto a disk.
Because there are several different operating systems in common use today, there are various types of levels of the pen drive that are configured to work with each system. Even persons who are using an older operating system can usually find a pen drive that is compatible. As long as the desktop or laptop is constructed with a USB port, and the pen drive is compatible with the operating system, the pen drive will provide practical and easy transmission of data from one hard drive to another one in a matter of minutes.

CD rom

CD-ROM (pronounced /ˌsiːˌdiːˈrɒm/, an acronym of "compact disc read-only memory") is a pre-pressed compact disc that contains data accessible to, but not writable by, a computer for data storage and music playback, the 1985 “Yellow Book” standard developed by Sony and Philips adapted the format to hold any form of binary data.[1]
CD-ROMs are popularly used to distribute computer software, including games and multimedia applications, though any data can be stored (up to the capacity limit of a disc). Some CDs hold both computer data and audio with the latter capable of being played on a CD player, while data (such as software or digital video) is only usable on a computer (such as ISO 9660 format PC CD-ROMs). These are called enhanced CDs.
Although many people use lowercase letters in this acronym, proper presentation is in all capital letters with a hyphen between CD and ROM. It was also suggested by some,[who?] especially soon after the technology was first released, that CD-ROM was an acronym for "Compact Disc read-only-media", or that it was a more "correct" definition. This was not the intention of the original team who developed the CD-ROM, and common acceptance of the "memory" definition is now almost universal. This is probably in no small part due to the widespread use of other "ROM" acronyms such as Flash-ROMs and EEPROMs where "memory" is usually the correct term.[citation needed]
At the time of the technology's introduction it had far more capacity than computer hard drives common at the time, although the reverse is now true though some experimental descendants of it such as Holographic versatile disc may not have more space than today's biggest hard drive